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摘要： 随着歌唱语音合成（SVS）与语音语言模型（SLM）的快速发展，高质量、多维度的声学

特征标注数据集成为技术突破的关键支撑，而传统声乐学习中存在优质指导资源稀缺、技巧界定

缺乏客观量化标准的核心痛点，人工标注复杂声学特征不仅耗时耗力，还难以满足大规模SVS模型

训练需求。针对这一问题，本文提出一种轻量化多头声乐技术识别模型“声枢（VocalPivot v4）”，

基于LSTM-CNN融合架构，整合CNN的频域局部特征提取优势与LSTM的时序动态建模能力，通

过1D卷积核优化、梅尔频谱裁剪、噪声注入等轻量化策略，实现对真声、假声、混声等7类声乐技

术标签的精准同步识别。

实验基于GTSinger数据集完成，结果表明，该模型参数量轻量版本可压缩在0.13M以内，增强

版本7类标签分类平均准确率94.99%，轻量化程度优于STARS等主流框架。该模型及附带开发的交

互界面软件“知音”，不仅可为声乐学习者提供实时反馈，更能作为高效音频标注工具，为SVS模

型训练提供高质量多维度标注数据，缓解ASR-LM-TTS技术链路的连接误差。

相关代码可查看：https://github.com/bgArray/VocalPivot；https://github.com/bgArray/ZhiYin。

关键词：自动歌唱标注（ASA）；声乐技术识别（Vocal Technique Identification）；LSTM-CNN融

合框架；轻量化优化

1 引言

1.1 研究背景、意义及现状

1.1.1 声乐学习的存在痛点

声乐学习作为一门高度依赖实践与反馈的学科，长期面临两大瓶颈：一是优质教学资源分布不

均，多数学习者难以获得专业教师对真声、混声、假声等核心技巧的实时指导与量化评估；二是声

乐技术的界定缺乏客观标准，传统依赖人工听觉判断的方式主观性强，难以精准区分相似技巧（如

混声与假声）的特征差异，导致学习者难以把握技巧习得的关键节点。这些痛点严重制约了声乐学

习的普及与效率提升。
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1.1.2 SVS与语音语言模型（SLM）的发展需求

声乐方面，近年来歌唱语音合成（SVS）技术取得显著突破：从早期DiffSinger[3]基于浅层扩

散机制解决过平滑问题，到TCSinger[20]实现零样本歌唱语音合成与多维度风格控制，SVS模型对

输入数据的精细化程度要求日益提高。

同时，语音语言模型（SLM）的兴起推动了端到端语音交互的发展，但“ASR+LM+TTS”的

传统链路存在信息损失、误差累积与传递等问题，亟需通过高质量音频标注数据构建更精准的语

音tokenize框架。[16]

然而，当前SVS与SLM发展面临共同瓶颈：缺乏大规模、多维度的复杂声学特征标注数据集。

现有数据集要么标注维度单一（仅涵盖音符、音素等基础信息），要么依赖人工标注导致规模有限，

难以支撑模型对声乐技术、情感基调等复杂特征的学习。自动歌唱标注（ASA）技术虽能缓解这一

问题，但现有标注模型存在参数量大、部署困难（如STARS[6]框架）等问题。因此，开发高精度、

轻量化的多标签声乐技术识别模型，为SVS与SLM提供高效标注工具，成为推动相关领域发展的关

键。

1.1.3 研究价值与应用场景

本研究提出的VocalPivot系列模型，以声乐技术识别为切入点，实现了轻量化与高精度的平

衡：

从应用价值看，模型可集成于移动应用等本地端，为声乐学习者提供“AI助教”式实时反馈，

降低专业技巧学习门槛；

从技术价值看，模型可作为高效音频标注工具，支撑大规模复杂声学特征标注数据集构建，

为SVS模型（如TCSinger）与SLM的优化提供数据支撑；

从产业价值看，轻量化特性使其可嵌入音乐制作、虚拟歌手等场景，推动音频处理技术的平民

化应用。

1.2 研究目标与主要贡献

本研究核心目标是构建一套高精度、轻量化、支持多标签分类的声乐技术识别模型（VocalPivot系

列），实现对7类声乐技术的精准识别，为声乐学习辅助与SVS/SLM数据标注提供支撑。主要贡

献如下： (a) 提出三级模型演进方案，从单一CNN到LSTM-CNN 3标签分类，最终形成多头分

类LSTM-CNN架构，系统验证了融合架构在声乐技术识别中的优势；

(b)优化轻量化技术策略，通过1D卷积核设计、梅尔频谱裁剪、噪声注入等方法，在保证92.70%准

确率的前提下，将模型参数量控制在0.13M以内；（VocalPivot v3）

(c) 实现7类声乐技术的同步识别，为SVS与SLM提供多维度标注工具，支撑复杂声学特征数据

集构建；

(d) 拓展跨语言适配能力，基于 v3 架构升级为 Enhanced Multi-label CNN-LSTM 架构

（VocalPivot v4），通过中英文混合数据联合训练，优化双层 LSTM 时序建模与多维度特征融合

策略，在保持轻量化特性的同时，提升模型跨语言泛化性能，实现中英文声乐技术的统一精准识别

（准确率94.99%）。
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2 已有相关研究综述

2.1 自动歌唱标注（ASA）与SVS技术

自动歌唱标注（ASA）是SVS的核心支撑技术，旨在从歌唱音频中提取音素对齐、音符转录、

声乐技术等多维度信息。早期ASA方法多采用分段处理策略，如ROSVOT[10]通过多尺度架构实现

音符转录，但缺乏对声乐技术的识别能力；STARS框架首次实现音素对齐、音符转录、技术识别

与风格标注的统一，但其复杂架构导致轻量化部署困难。

SVS技术的发展与ASA技术紧密相关：DiffSinger通过扩散模型提升了合成自然度，但依赖高

质量标注数据；TCSinger实现零样本风格迁移，需要丰富的风格与技术特征标注作为支撑。现

有SVS模型的性能瓶颈日益凸显为数据驱动的限制，亟需高效的ASA工具提供大规模复杂特征标

注数据。

2.2 声乐技术识别模型研究

2.2.1 模型1：XGB-DE差分进化优化模型

该模型由Boratto等人提出，通过差分进化（DE）算法优化XGBoost的超参数，提取14项时域

特征实现chest、mixed、head三类声乐寄存器的分类。其核心优势是在小样本（单一歌手、单一元

音，350条涵盖3种声乐技术的数据）训练下能取得较高准确率，但存在明显局限：依赖人工设计特

征，泛化能力差；小样本训练导致真实场景下性能波动剧烈，难以适配大规模标注需求。不过该实

验仅使用14个时域声学特征进行提取，方案具有参考价值。[1]

2.2.2 模型2：GTSinger自带ROSVOT改编模型

该模型基于ROSVOT的多尺度架构改编，是GTSinger数据集的配套标注工具，支持混声、假

声等6类声乐技术的识别。模型通过融合Conformer[2]与U-Net架构提升特征提取能力，但仅支持固

定类别标签识别，且参数量较大（2.51M），缺乏多标签扩展能力与轻量化特性。

2.2.3 模型3：STARS统一标注框架

STARS是浙江大学提出的统一歌唱标注框架，采用“CMU Encoder+多尺度声学编码器”架

构，实现音素对齐、音符转录、技术识别与风格标注的多任务集成。模型在COnPOff指标上达

到71.0，RPA指标86.7，支持9类声乐技术识别，但参数量高达50.12M，推理速度慢，难以满足低

资源设备部署需求。

本篇旨在尝试用简易框架完成STARS框架中的声乐技术标签分类任务，并非全自动ASA。

2.3 轻量化深度学习模型在其他音频分类中的应用

轻量化深度学习模型在音频分类中聚焦架构优化与特征筛选，通过深度可分离卷积、梅尔频谱

裁剪等技术实现参数精简与维度降低。

其中CNN-RNN融合模型（含CRNN等衍生架构）在非声乐标注领域贡献显著，如Sebastian

Murgul等人的CRNN模型：用4层卷积块提取吉他音频对数梅尔频谱特征，双向GRU捕捉扫弦与和

弦的时序关联，和弦识别准确率达90%，远超传统CNN的73%-79%。在通用音频分类中，该架构也

能精准区分乐器与环境音的频域及时序差异，小数据集下性能优于单一CNN或RNN。
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轻量化与泛化平衡上，CNN-RNN通过架构精简与数据优化适配实际部署：Murgul的CRNN采

用双分支共享卷积栈，参数量降至传统模型60%，训练仅需2小时，适配低资源设备；针对数据稀

缺问题，结合合成与真实数据训练，使模型在麦克风噪声场景下和弦识别准确率仍达85%以上，较

纯真实数据训练提升40%，为其他声学标注工程化落地提供可行路径。[12]

除此以外，LSTM-CNN融合架构有不错的兼容性。其也在语音情绪多标签的任务中取得了进

展，例如电子科技大学采用与本篇类似的技术路径取得了不错的成绩。[4][17]

3 实验设计与模型架构

3.1 数据预处理

为提升模型的鲁棒性与轻量化程度，本文设计两套核心预处理策略，均经实验验证有效性。

3.1.1 噪声注入增强鲁棒性

采用频域偏移、幅度缩放、高斯噪声注入相结合的复合增强策略，模拟真实场景中音频信号的

各类自然扰动与噪声干扰，仅对50%的训练样本随机应用增强，平衡原始数据与增强数据比例，避

免过度扰动破坏核心特征： (a) 频域偏移：对梅尔频谱的频域轴进行±1范围内的随机偏移，偏移

后的空白区域填充边缘均值，避免硬填充导致的特征突变，模拟频谱特征的自然偏移； (b) 幅度

缩放：对频谱幅度进行0.9-1.1倍的随机缩放，模拟演唱力度的自然波动，保留音频核心能量特征；

(c) 高斯噪声注入：叠加低强度高斯噪声（噪声标准差为原频谱标准差的5%），模拟环境背景噪声

干扰，使模型学习区分有效音频信号与无用噪声，提升对复杂场景的适应能力。

实验表明，该复合增强策略可使模型对各类音频扰动的抗干扰能力显著提升，在含轻微噪声或

未消除伴奏的测试场景中仍能完成分类任务，鲁棒性得到一定强化。

3.1.2 梅尔频谱裁剪优化模型尺寸

将原始梅尔频谱的频域范围裁剪为200Hz-5kHz关键频段（该频段包含声乐技术的核心特征，

如真声的低频谐波、假声的高频成分），裁剪后梅尔倒谱频率特征维度从128维精简至74维。对于频

域维度不足74的样本，通过频域后填充0值确保输入结构一致性。这一操作在不损失关键信息的前

提下，显著降低特征冗余度，使模型参数量减少约42%，有效实现轻量化，同时提升模型训练与推

理效率。

3.2 模型演进与架构设计

本文设计三级模型演进方案，从预实验到最终模型逐步优化，具体架构如下：

3.2.1 预实验模型：单一CNN架构

为检验仅使用CNN提取梅尔倒谱特征能否识别真声、混声、假声三类核心声乐发声模式，设

计预实验并进行双重校验：(a)核准梅尔频谱能否包含不同腔体共鸣位置发声技术的声学特征信息，

测试该技术路径下CNN的分类准确率；(b) 通过反向传播输出训练后的CNN参数，观察CNN对不

同腔体共鸣位置发声技术在声学特征上的提取概括能力，并与相关实验耳鼻喉科学中的数据对比。

核心用途：验证CNN在声乐技术识别中的基础能力，为后续架构设计提供参考
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核心用途 验证 CNN 在声乐技术识别中的基

础能力，为后续架构设计提供参考

架构细节

输入层 128完整梅尔频谱（为展现完整声

学特征）、统一1秒时长的音频训练

单元（通过程序对数据库的音频进

行分字：如歌词“我和你”先拆

分为“我”、“和”、“你”）；大于

一秒的单字截断；小于一秒的单

字补充0频谱。统一后时间采样点

为94。

卷积块（共3组） 1组： Conv2D (32×3×3,

ReLU) → MaxPool2D (2×2)

→ BatchNorm → Dropout

(0.2)

2组： Conv2D (64×3×3,

ReLU) → MaxPool2D (2×2)

→ BatchNorm

3组： Conv2D (128×3×3,

ReLU) → MaxPool2D (2×2)

→ BatchNorm → Dropout

(0.3)

空间注意力模块 Spatial Attention Block（仅空

间注意力）+ Dropout (0.2)

过渡卷积层 Conv2D (32×3×3, ReLU) +

L2 正则化 (λ = 0.001)

全连接层 Flatten → Dense(128, ReLU)

→ Dropout (0.5)

输出层 Dense (4, Softmax)（4分类任

务）

(a) 模型架构细节表

Input(mel gram, 128×94×1)

Conv2D(32,3×3,ReLU) MaxPool(2×2)

BN + Dropout(0.2)

Conv2D(64,3×3,ReLU) MaxPool(2×2)

BatchNormalization

Spatial Attention Dropout(0.2)

Conv2D(128,3×3,ReLU) MaxPool(2×2)

BN + Dropout(0.3)

Trans Conv2D(32,3×3) L2(0.001)

Flatten + Dense(128,ReLU) Dropout(0.5)

Output Dense(4,Softmax)

(b) 模型架构流程图

图 1: CNN声乐技术识别模型架构
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核心用途 验证 LSTM 与 CNN 融

合架构的优势，对比不

同 LSTM 配置的性能

架构细节

输入层 74维裁剪后梅尔频谱

CNN子网络 2层1D卷 积 （32×5×1、

64×3×1）， ReLU激

活+批归一化

LSTM子网络 1层256单元单向LSTM

dropout层 dropout rate=0.4

输出层 全 连 接 层+Softmax激

活， 支持3类标签 （真

声、假声、混声）分类

(a) CNN-LSTM融合架构细节表

Input (mel gram, 74×seq len)

Conv1D 32 filters, 5 kernel, ReLU activation

BatchNormalization

Conv1D 64 filters, 3 kernel, ReLU activation

BatchNormalization

LSTM 256 units, dropout=0.3, batch first=True

Dense 64 neurons, ReLU activation

Dropout rate=0.4

Output Dense 3 classes, Softmax activation

(b) CNN-LSTM融合架构流程图

图 2: LSTM与CNN融合的声乐分类模型架构

3.2.2 前置实验模型：LSTM-CNN 3标签分类模型

为检验LSTM与CNN融合架构的可行性及帧级别时序序列分类任务的可行性，设计前置实验，

同时测试频域增强等数据预处理效果及双向LSTM等其他框架效果，为最终模型积累参数与经验。

核心用途：验证LSTM与CNN融合架构的优势，对比不同LSTM配置的性能

3.2.3 最终轻量版模型：VocalPivot v3多头分类LSTM-CNN架构

核心用途：实现7类声乐技术同步识别，兼顾高精度与轻量化

为实现轻量化，采用“标准卷积+深度可分离卷积”组合：第一层用标准Conv1d（32个5×1核）

快速捕捉局部频域特征关联，第二层通过深度可分离卷积（分组卷积+1×1点卷积）将通道数从32扩

展至64，在保证特征提取能力的同时大幅减少参数量与计算开销，解决传统CNN在长时序数据上

的效率瓶颈；搭配单层LSTM（隐藏单元128）捕捉帧间时序依赖，既避免多层LSTM的过拟合风

险，又通过额外添加的Dropout (0.3) 弥补单层模型泛化能力不足，平衡时序建模效果与计算成

本。

在分类任务中，多个标签存在平行或相斥关系（如真声和假声相斥，颤音可平行于真声/混

声/咽音等），因此设计基于LSTM的末端多头分类：区别于主流多专家协作模型（MoE），采用

“共享特征提取+独立分类头”架构——共享CNN-LSTM特征提取头统一捕捉数据通用特征，再通

过nn.ModuleList为每个标签配置独立Linear分类器，既保证不同标签间特征共享复用，又避免标

签间相互干扰，适配多标签并行分类需求（与和弦识别LSTM-CNN架构不同，因和弦在时间序列

上无平行关系）；输出层直接返回logits值，可灵活搭配sigmoid激活与二元交叉熵损失，适配每个

标签的独立判断逻辑。

依据声学特征，每个序列的特征依赖梅尔倒谱中频率通道信息，因此在每个时间步通过两次维

度转置（transpose）实现卷积特征（Conv1d，频率通道优先）与时序特征（LSTM，序列优先）的

维度适配，解决不同网络层输入格式冲突；关键层后均配置BatchNorm1d与ReLU激活，稳定数据

分布、增强特征非线性表达能力，同时通过共享全连接层（128→64）降维，减少后续分类头参数
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核心用途 实现7类声乐技术同

步识别，兼顾高精度

与轻量化

架构细节

输入层 74维裁剪后梅尔频谱

共享特征提取头-CNN 1.标 准Conv1d

（32,5,padding=2）

+BN1d+ReLU

2.深 度 可 分

离Conv1d （32→64）

+BN1d+ReLU

维度转换 (batch size, in-

put dim, seq len) ↔

(batch size, seq len,

channels)

LSTM层 LSTM （输

入64, 隐 藏128,

batch first=True,

dropout=0.0） +

Dropout (0.3)

共享全连接层 Linear(128→64) +

ReLU + Dropout

(0.4)

多标签分类头 每 个 标 签 对

应Linear(64→1)，

最 终 拼 接

为(num labels)维

输出7类标签（真声、

混声、假声、气声、

咽音、颤音、滑音、

说话声）概率

(a) 轻量化多标签CNN-LSTM架构细节表

Input (batch, seq len, input dim)

Transpose (batch, input dim, seq len)

Conv1D 32 filters, 5 kernel, padding=2

BatchNorm1d (32 channels)

ReLU Activation

Depthwise Conv1D 32 filters, 3 kernel, groups=32

Pointwise Conv1D 64 filters, 1 kernel

BatchNorm1d (64 channels)

ReLU Activation

Transpose (batch, seq len, 64)

LSTM hidden size=128, batch first=True

Dropout rate=0.3

Shared Dense Linear(128→64) + ReLU

Dropout rate=0.4

Multi-Label Classifier num labels × Linear(64→1)

Output (batch, seq len, num labels)

(b) 轻量化多标签CNN-LSTM架构流程图

图 3: 7类声乐技术同步识别的轻量化多标签模型架构
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规模，进一步提升模型轻量化水平。

卷积核选取上，优化单一CNN框架的2×2核为1D卷积核，既依据声学特征强化相邻频域的通

道特征，又减轻计算负担。

3.2.4 优化模型：VocalPivot v4多语言泛化能力模型

核心用途：以中英文双语言场景为例，7 类声乐技术同步识别，平衡跨语言泛化能力与模型轻量化

特性。

在这个部分，我们追加了更多层的CNN和LSTM。这个模型的具体架构细节可参考附录B。

4 实验与结果分析

4.1 实验数据集：GTSinger

4.1.1 数据集基本信息

实验使用GTSinger[7]的中、英文子集，该数据集在TextGrid文件中提供对齐与注释信息，包

括单词边界、音素边界、六种技巧（混声、假声、气声、咽音、滑音、假声）的音素级注释，以及

情感、节奏、音高范围等全局风格标签。

4.1.2 数据筛选与划分

基于GTSinger数据集进行如下处理：

标签重映射：形成7类声乐标签（0=真声、1=混声、2=假声、3=气声、4=咽音、5=颤音、

6=滑音、-1=说话声）；（源数据库中0标签本身为正常唱歌无特殊技巧，本篇标记为真声）

数据筛选：考虑轻量模型跨语言泛化能力可能较弱，为避免拟合不稳定，在VocalPivot v3模型

中，仅使用GTSinger中两位中文歌手（含一男一女，7类技巧）的全量数据，原始样本量18542条

（ZH-Alto-1：9021条、ZH-Tenor：9521条）；

样本均衡：对不同类标签进行比例划分，得到均衡后样本数16738条，删去说话标签和无效标

签，各类样本量如下：

真声 混声 假声 气声 咽音 滑音 颤音

2378517 957349 752057 363820 345262 191493 1629015

表 1: 中文标签数据明细。（单位：个）

划分比例：按8:2分层抽样划分训练集（13390条）与测试集（3348条），确保各标签分布均衡。

在追加的跨语言数据对比中，补充的数据如下： GTSinger中三位英文歌手（含一男两女，7类

技巧）的全量数据，原始样本量12135条（EN-Alto-1：3020条、EN-Alto-2：5054条、EN-Tenor：

4065条）；同上述操作后得到具体的标签样本量如下：

真声 混声 假声 气声 咽音 滑音 颤音

1421501 1792276 571563 206130 218365 145338 1080165

表 2: （续）英文标签数据明细。（单位：个）
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4.2 4.2 实验配置与评估指标

硬件环境：CPU（Intel i5-1135G7）、无GPU；

软件环境：Python 3.12.4、Keras迁移至PyTorch；（预实验和前置实验在Keras快速检验，正

式v3、v4模型在PyTorch稳定训练。）

训练参数：Adam优化器，初始学习率0.001，每5个epoch衰减为0.9倍；batch size=32；训练

轮次=50；早停策略（patience=8）；

损失函数：二元交叉熵损失（BCEWithLogitsLoss）；

评估指标：准确率（Accuracy）、精确率（Precision）、召回率（Recall）、F1分数。

4.3 对比实验：XGB-DE模型泛化性能分析

虽论文中XGB-DE模型的3类标签（胸声、混声、头声，对应GTSinger的真声、混声、假声）

最低单类识别准确率达96%，但实验中仅用少量GTSinger各类标签样本测试时，该模型泛化能力不

佳：4组共39轮只含真假混声标签的测试中，平均准确率仅26.85%，训练不稳定。测试数据如下：

测试组 平均准确率

CZH-Chest-Control 21.5%

CHZ-Falsetto 56.0%

CZH-Mixed 10.9%

CZH-Chest-Control 21.9%

平均 26.85%

表 3: XGB-DE测试数据。主要测试GTSinger中文数据库中0、1、2标签。

该结果源于模型训练数据量过少且单一，导致真实场景下泛化能力差、鲁棒性不足。虽模型在

小样本学习中效率高，但真实应用场景下框架需优化。

4.4 预实验结果与分析

4.4.1 分类性能数据

模型

版本

数据集

规模

实际训

练轮次 模型结构差异

测试集

准确率

测试集

损失

训练

时长

（秒）

M2E3 89500 26 Sequential， 5组 卷

积(32→64→128→256→32)，

4个Dropout层，无注意力

85.34% 0.4166 8053.47

M5E1 89500 39 Functional，带空间注意力机制，5组

卷积，4个Dropout层，准确率随机最

高

86.02% 0.4005 12589.14

M5E2 35968 24 同M5E1，多语言预训练组 80.47% 0.5383 3071.82

表 4: CNN不同测试架构的数据结果。其中模型版本为对应GitHub上程序文件名称。数据及规模

采用截断后单字数据量，跟上表1、2中的数据计量方式不同。结果显示，引入空间注意力机制的

M5E1 模型准确率最高（86.02%），但训练时长显著增加。
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4.4.2 梅尔频谱反向验证共振峰特征

通过CNN模型反向输出真声、假声、混声、说话声的梅尔频谱图，发现其共振峰特征与相关

实验耳鼻喉科学中的数据高度一致：真声对应较低频率共振峰，假声对应较高频率共振峰；混声作

为真声与假声的过渡音区，共振峰却比假声更高——参考相关论文中歌手混声（或咽音）状态下的

频率共振峰数据，歌手“金属芯”听感的混声或咽音部分，共振峰集中于第一或二泛音（F1、F2），

因此共振峰约在4kHz左右，与生理学相符，推测CNN能准确提取概括不同声乐技术的声学特征。

(a) Label 0 (inverted) (b) Label 1 (inverted) (c) Label 2 (inverted) (d) Label 3 (inverted)

图 4: 不同标签的反转图热力图可视化。对应：0为真声，1为混声，2为假声，3为说话。横轴为1秒

分割成的时间单元，纵轴从下至上为不同的梅尔倒谱频率通道，颜色越偏黄频率越高。与下图对比

时，可着重参考纵轴的分布。
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图 5: 男女歌手头声共振峰。参考节选自生理学相关论文[9]。可以在3.5KkHz-4kHz附近找到对应的

共振峰。
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模型类型 核心结构差异 样本数 特征处理 数据增强 测试集准确率 测试集损失

纯LSTM 2层LSTM（256→128单元），输入特征128维 1921 无频域切片 无 68.00% 1.0873

双向LSTM 2层双向LSTM（512→256单元），输入特征128维 1921 无频域切片 无 17.83% 0.9825

轻量LSTM 1层LSTM（128单元），输入特征74维（切片后） 1921 频域切片（128→74维） 无 69.09% 1.0714

CNN-LSTM 2层1D-CNN（32→64滤波器）+1层LSTM（256单元），输入特征74维 3823 频域切片（128→74维） 频谱增强+时序裁剪 84.05% 0.7059

表 5: LSTM 相关架构的性能。结果显示，CNN-LSTM 融合架构的准确率最高（84.05%），验证了

融合架构的优势；双向 LSTM因硬件限制与特征适配性问题，准确率未达预期（17.83%）；频域切

片处理有效提升了模型轻量化程度与性能。

4.5 前置实验结果与分析

前置实验对比不同LSTM框架处理3分类任务的准确率，其中双向LSTM未达预期：虽理论上

序列关联能力更强，但实际准确率低，推测原因有二：一是测试硬件规格低，无法支撑大规模双

向LSTM训练（体现LSTM框架需大规模计算成本）；二是声乐特征需重点关注频率通道信息，过

度关注时域会降低模型对声音频域组成的关注度。此外，在即时分类中，双向序列建模并不现实，

从声乐技术来看，时间靠后的技术对时间靠前的技术影响也较小。

4.6 最终模型结果与分析

4.6.1 7类声乐标签分类性能

标签 准确率 (%) 精确率 (%) 召回率 (%) F1分数

真声（0） 90.23 83.26 84.63 83.94

混声（1） 95.77 83.31 70.64 76.46

假声（2） 97.98 90.83 81.96 86.17

气声（3） 98.60 89.29 71.20 79.23

咽音（4） 98.85 90.93 73.41 81.24

滑音（5） 98.19 67.51 9.74 17.03

颤音（6） 87.50 73.44 37.01 49.21

说话声 (99.87) – – –

平均 95.30(95.87) 82.91 59.66 61.55

表 6: 该表格展示了 VocalPivot v3 模型在中文测试集上对 7 类核心声乐标签的分类性能指标（标

签对应关系：0-真声、1-混声、2-假声、3-气声、4-咽音、5-滑音、6-颤音）。其中，咽音、假声的

准确率最高（分别为 98.85%、97.98%），滑音的召回率最低（9.74%），滑音与颤音的 F1分数显著

低于其他标签，主要受数据集标注模式与时序特征建模不足影响。说话声因与其他声乐技术声学特

征差异极大，分类准确率接近 100%，仍沿用原数据（括号标注），未计算其精确率、召回率及 F1

分数。

从7类声乐技术的分类指标看，模型整体分类性能优异（平均准确率95.30%），但不同标签识

别效果存在显著差异，且与GTSinger数据集样本分布特征高度相关：

从样本量维度分析：真声样本量最多，分类准确率90.23%、F1分数83.94，体现充足样本对训

练的支撑作用；

混声、假声样本量适中，准确率分别为95.77%、97.98%，F1分数76.46、86.17，分类效果稳
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定；

滑音、颤音虽样本量差异大，但均呈低F1分数特征（滑音17.03、颤音49.21），其中颤音召回

率仅9.74%，为分类性能最差标签。

从声乐技术逻辑分组看：

发声位置组（真声、混声、假声）：平均准确率94.65%，平均F1分数82.15，分类效果最优——

推测因该类技术频域特征差异显著，与CNN局部特征提取能力高度适配；

闭合与咽腔控制组（气声、咽音）：虽准确率高，但模型未完全识别其与发声位置标签的平

行关系（如咽音与混声特征混淆导致咽音召回率73.41%），实际场景可通过咽壁控制特征辅助混

声判断，弥补偏差（在实际分类中，咽音和混声不仅是平行关系标签，还具有较高的关联性，由

于GTSinger数据库中并未提供同时存在的样本，故模型理解有所偏差）；

音准处理技术组（滑音、颤音）：F1分数远低于其他组别，滑音（37.01%）、颤音（9.74%）召

回率显著偏低——推测核心原因：一是数据集缺乏真实场景下多混合平行标签标注（如“真声+颤

音”“混声+滑音”），模型难学技术叠加特征；二是1D-CNN放大频域信息提取，单层LSTM对时

域动态特征捕捉能力有限，而滑音、颤音核心特征依赖时序变化规律。针对颤音低召回率，可通过

设置30%概率阈值优化判断逻辑，提升实际应用可靠性；滑音因真实演唱中出现频率低，虽F1分数

仅17.03，但对整体分类效果影响有限。

说话声标签准确率达99.87%，因与其他声乐技术声学特征差异极大，模型可快速区分，故未计

算其精确率、召回率及F1分数。

本测试使用的训练数据和测试数据均源自于GTSinger的中文歌手数据库，存在一定过拟合和

数据污染的风险。下表中（表7），数据来自于GTSinger中英双语的数据库，更有参考价值。

4.6.2 与相关模型的对比和迁移测试

VocalPivot模型与两类相关模型的性能对比如下（均采用GTSinger中英双语数据测试，STARS测

试过程中引入了新的技术标签数据并未公开，因此无法对比和迁移训练。）

Setting Metric BUB BRE PHA VIB GLI MIX FAL CHE WEA STR Spe Avg ACC/F1 Params (Num/Size)

GTSinger
F1 46.9 68.7 88.7 95.7 78.5 61.5 33.2 - 37.2 82.5 - 67.3 2,508,810 (2.51M)

ACC 31.5 73.2 75.7 99.3 78.9 93.9 40.8 - 17.4 95.3 - 65.9 2,508,810 (2.51M)

STARS
F1 71.7 66.9 85.0 65.5 72.3 74.7 93.5 - 90.3 99.4 - 79.9 50,117,924 (50.12M)

ACC 97.8 88.8 95.4 96.7 84.1 81.9 94.7 - 90.4 93.9 - 91.5 50,117,924 (50.12M)

VocalPivot (v3, mine, mig-test)
F1 - 62.33 52.13 10.16 43.86 50.38 75.93 78.51 - - - 53.33 130,729 (0.13M)↓

ACC - 97.77↑ 96.20↑ 97.97↑ 85.59↑ 87.57↑ 96.21↑ 87.59 - - (99.87)↑ 92.70↑ 130,729 (0.13M)↓

VocalPivot (v4, enhance, mine)
F1 - 75.98↑ 80.51 37.0 49.98 83.10↑ 87.62 82.90↑ - - - 70.94 1,437,384 (1.44M)↓

ACC - 98.38↑ 98.54↑ 98.25↑ 86.12↑ 93.98↑ 97.83↑ 91.82↑ - - - 94.99↑ 1,437,384 (1,44M)↓

表 7: 该表格对比了 VocalPivot 系列模型与 GTSinger 配套模型、STARS 框架的声乐技术分

类性能与参数量。其中，“↑” 表示对应模型的指标优于对比模型，“↓” 表示参数量少于对比模
型；“VocalPivot (v4, enhance)”为自研增强版本，基于双语数据结构测试。结果显示：VocalPivot

v3在参数量大幅减少的同时，多数标签的准确率已实现反超（这项测试为仅用中文数据训练，在中

英双语的环境测试的迁移测试）；其增强版本进一步提升了各项性能，同时保持轻量化特性，体现

了轻量化与高精度的平衡优势。需注意，STARS 框架为多任务标注工具，声乐技术识别仅为其功

能之一，若单独对比声乐技术识别模块的参数量，与 GTSinger 配套模型的差距可能不大。（BUB-

气泡音；WEA-弱（混）声；STR-强（混）声）

为全面验证 VocalPivot 系列模型的性能优势，本研究选取 GTSinger 配套模型与 STARS 统

一标注框架作为对比对象，基于 GTSinger 中英双语数据集开展测试。测试结果显示，VocalPivot

v3模型在迁移测试中，轻量化与分类精度的平衡上表现突出，尤其增强版 VocalPivot v4 的综合性
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能更为优异。

与 GTSinger 配套模型相比，VocalPivot v3 参数量仅 0.13M，较前者 2.51M 的参数量减少

94.8%，但平均准确率达到 92.70%。而 VocalPivot v4 在保持轻量化特性（参数量 1.44M）的基础

上，进一步优化了分类性能，平均准确率提升至 94.99%，多数标签的 F1分数较 v3版本显著提高，

展现出更强的特征识别能力。与多功能标注框架 STARS 相比，VocalPivot 系列模型的轻量化优

势更为明显。STARS 参数量高达 50.12M，而 VocalPivot v3 参数量仅为其 0.26%，VocalPivot v4

也仅为其 2.87%。在核心声乐技术标签识别上，VocalPivot v3 的假声（97.98%）、咽音（98.85%）

准确率已超过 STARS 的 94.7% 和 96.7%；VocalPivot v4 则在此基础上进一步提升，假声准确率

达 97.83%，咽音准确率维持在高位，同时混声、气声等标签的识别稳定性显著增强。需要说明的

是，STARS 作为多任务标注工具，声乐技术识别仅为其功能之一，若单独剥离该模块，其参数量

与 GTSinger 配套模型的差距可能缩小，但这并不影响 VocalPivot 系列模型在轻量化与单一任务

精度平衡上的优势。此外，真实场景测试（5 位有声乐基础演唱者的演出片段）显示，VocalPivot

模型分类结果与人工判断一致性超过 70%，且可在 Intel i5-1135G7 CPU 环境下高效部署与训练，

充分满足低资源设备的应用需求，故推测该模型具备较强实用价值。

4.7 消融实验：关键组件有效性验证

Model Core Structure Total Params Train Time Best Val Acc Test Acc Key Advan-

tage

VocalPivot v3
Lightweight CNN + LSTM

130,729 (0.13M) about 1.5 h 95.15% 93.75%
Ultra-

lightweight,

fast conver-

gence

(Depthwise Separable Conv)

PureLSTM (Ablation)
Pure LSTM (2-layer)

965,384 (0.97M) about 16.0 h 97.41% 94.61%
Higher perfor-

mance, heavy

computation

(No CNN Feature Extraction)

表 8: 该表格为消融实验结果，仅在中文数据库测试。对比了 LSTM-CNN 融合架构与纯 LSTM 架

构的性能差异。纯 LSTM 模型的测试准确率仅比 VocalPivot v3 高 0.86 个百分点，但参数量是其

7.46 倍，训练时长是其 10.67 倍，验证了 CNN 在模型轻量化中的关键作用，即在微小性能损失

下，大幅降低计算成本与部署难度。

消融实验对比显示：纯LSTM模型测试准确率（94.61%）较VocalPivot（93.75%）仅提升0.86个

百分点，但参数量达0.97M（为VocalPivot的7.46倍），训练时长约16.0小时（为VocalPivot的10.67倍）。

该结果验证CNN在模型轻量化中的关键作用：通过1D卷积核优化、梅尔频谱裁剪等策略，在

仅损失0.86%准确率的前提下，实现模型参数量减少83.4%、训练时长缩短90.6%，有效补齐纯LSTM模

型体量大、计算成本高的短板，为低资源部署提供技术支撑。

5 讨论

5.1 模型性能优势与原因分析

从严谨角度，模型鲁棒性尚未达产业应用落地水平，但研究以轻量模型为出发点，取得显著实

验结果：
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(a) 单一 CNN 即可有效提取声乐技术的核心声学特征，预实验中引入空间注意力机制的 CNN

模型准确率达 86.02%，证明梅尔频谱包含的频域信息与 CNN 的局部特征提取能力高度契合；

(b) LSTM 框架在声乐技术识别任务中展现出独特优势，声乐技术标签在时序上的关联时间步

较紧密，无需依赖长时程上下文信息，LSTM的时序动态建模能力能够精准捕捉帧间依赖关系，而

STARS 采用的 U-Net 架构更适用于多层级声学信息关联的任务；

(c) LSTM-CNN 融合架构实现了优势互补。CNN 负责高效提取频域局部特征，LSTM 负责捕

捉时序动态关联，再结合 1D 卷积核、深度可分离卷积、梅尔频谱裁剪等轻量化策略，既解决了

传统 LSTM 参数量大的问题，又弥补了单一 CNN 时序建模能力的不足。VocalPivot v4 通过增加

CNN 与 LSTM 层数、优化特征融合策略，进一步提升了跨语言泛化能力与分类精度，验证了该融

合架构的可扩展性。

5.2 研究局限与未来改进方向

模型在多标签平行关系识别中仍存在特征关联剥离不充分的问题，主要体现在两类典型场景。

其一，闭合、咽腔控制与发声位置的平行关系识别偏差，气声、咽音作为独立于真声、混声、假声

的技术维度，其与发声位置的特征关联尚未完全剥离，例如气声与真声的混淆样本占比约 13.5%。

这有可能并未分类错误，但是训练时因为数据标签没有平行对照而训练导致错误，缺乏真声 + 气

声、混声 + 气声等混合标签样本，仍需通过多维度特征融合进一步提升识别准确性。其二，音准

处理技术与其他技术的叠加关系识别不足，颤音常与真声、混声等技术叠加出现，但数据集标注模

式适配多专家协作模型（MoE）的单标签对照组设计，缺乏真声 + 颤音、混声 + 滑音等混合标

签样本，导致模型易将真声中的波动音准误判为颤音，混淆矩阵中真声向颤音的误分类样本占比达

3.2%。

技术层面，1D-CNN 对频域信息的放大作用与 LSTM 对时域信息的关注度不足形成核心矛盾，

这也是音准处理技术组（滑音、颤音）识别效果欠佳的关键原因。滑音、颤音的核心特征依赖精细

的时序变化规律，当前模型采用的单层 LSTM（128 隐藏单元）难以充分捕捉这类动态特征，需借

鉴 MoE 框架设计独立时序特征分析分支，针对性优化该类标签的识别性能。

此外，对比“仅真声 / 混声 / 假声 3 类标签框架” 与“7类标签框架” 的识别结果，发现

3 类标签框架的准确率反而低于 7 类框架。这一现象表明，多任务头虽可能淡化 3 类核心声音状

态的分类难度，但并未彻底解决其界定标准模糊的问题，后续需补充更多代表性数据以缓解这一情

况。真实场景下，我观察到在频繁技术切换的段落，模型有时无法准确分辨，这也与训练数据无频

繁切换技术的样本有关。

最后，研究训练与测试数据仅涵盖两位中文歌手与三位英文歌手，样本的语言范围与歌手多样

性有限，模型在多语言、多歌手场景下的迁移能力尚未经过充分验证，更广泛场景的适配可能需要

适度扩大模型体量。

6 结论

本研究针对声乐学习优质指导资源稀缺、技术界定缺乏客观标准，以及 SVS 与 SLM 发展亟

需大规模多维度声学特征标注数据集的核心痛点，提出 VocalPivot 系列轻量化多头声乐技术识别

模型。该系列模型基于 LSTM-CNN 融合架构，整合 CNN 频域局部特征提取与 LSTM 时序动态

建模优势，通过 1D 卷积核优化、梅尔频谱裁剪、噪声注入等轻量化策略，实现真声、假声等 7 类

声乐技术标签的精准同步识别。

实验结果表明，VocalPivot v3 参数量压缩至 0.13M 以内，平均准确率达 92.70%；增强版
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VocalPivot v4 通过扩展网络层数与中英文混合数据训练，平均准确率提升至 94.99%，同时保持

1.44M 的轻量化特性。与 GTSinger 配套模型、STARS 框架相比，该系列模型在大幅降低参数量

（最多减少 99.7%）的同时，核心标签识别准确率实现反超，且在含轻微噪声的复杂场景中仍保持

稳定性能，可在普通 CPU 环境下高效部署。

三级模型演进方案充分验证了融合架构的有效性，模型及配套“知音” 交互软件具备多重实

用价值：可为声乐学习者提供实时反馈，降低专业技巧学习门槛；作为高效音频标注工具，支撑大

规模复杂声学特征数据集构建，缓解传统技术链路的信息损失问题；轻量化特性使其可嵌入移动应

用、音乐制作等场景，推动音频处理技术平民化。

研究仍存在局限，如滑音、颤音的时序特征识别性能有待提升，多语言、多歌手场景迁移能力

需进一步验证。未来将通过优化时序建模结构、扩展数据集多样性、融合多维度声学特征等方式，

持续提升模型泛化能力与实用价值。

未来，其他在时序建模要求较低的即时任务中，推测LSTM-CNN的框架仍有相当的应用潜

力。
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图 6: 知音系统主界面

A 知音系统架构与功能

知音系统是基于声枢（VocalPivot v3）模型开发的桌面端AI音频听觉功能集成软件，提供了

直观的交互界面，支持实时录音、音频分析、声乐技术分类等功能。

A.1 系统架构

知音系统基于PySide6（Qt6）框架开发，采用模块化设计，整体架构如图6所示：

系统主要由以下核心模块组成：

1. 应用层： - 主窗口（MainWindow）：包含左侧导航栏和右侧内容区域 - 功能窗口：各功能

模块的独立窗口 - 组件库：导航组件、波形显示组件等可复用UI组件

2. 核心层： -应用程序核心（ZhiYinApp）：管理应用程序生命周期 -基础窗口（BaseWindow）：

所有窗口的基类，提供通用功能

3. 功能模块层： - 音频分类模块：使用声枢（VocalPivot v3）模型进行多标签分类 - 音源分

离模块：使用Demucs进行人声和乐器分离 - 实时录音模块：支持低延迟录音和实时分析 - 多音频

处理器：同时处理多个音频文件

4. 工具层： - 音频工具：音频文件读写、预处理、特征提取 - 模型工具：模型加载、推理、结

果处理 - 配置管理：全局配置的加载和管理

5. 资源层： - 模型文件：声枢（VocalPivot v3）模型及其配置 - 图标资源：应用程序使用的

图标

A.2 系统功能

知音系统提供了多种实用功能，满足不同场景下的需求：

A.2.1 1. 主界面

系统主界面包含左侧导航栏和右侧欢迎区域，用户可以通过左侧导航快速访问各功能模块。主

界面如图7所示：
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图 7: 知音系统主界面

图 8: 知音系统录音界面

A.2.2 2. 实时录音功能

支持实时录音，用户可以直接录制自己的演唱，系统实时显示音频波形和基频分析，并在录制

完成后进行音频分类。录音界面如图8所示：

A.2.3 3. 音频分类功能

对输入音频进行7类声乐技术的分类，包括真声、混声、假声、气声、咽音、颤音、滑音和说

话声，并以可视化方式展示分类结果。分类界面如图9所示：

A.2.4 4. 音频分离功能

使用Demucs模型进行人声与伴奏分离，支持将音频分离为vocals、drums、bass、other四个轨

道，提高模型在复杂音频场景下的识别准确率。分离界面如图10所示：
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图 9: 知音系统分类界面

图 10: 知音系统音频分离界面
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图 11: 知音系统分析结果界面

A.2.5 5. 分析结果功能

对分类结果进行详细分析，包括各类声乐技术的出现时长、频率分布等，帮助用户了解自己的

演唱特点。分析界面如图11所示：

A.3 项目开发难点

在知音系统的开发过程中，遇到了多个技术难点，以下是其中几个主要难点及其解决方案：

A.3.1 1. 波形滚轮缩放与平移设计

在音频可视化中，波形的缩放和平移是核心功能，需要实现流畅的用户体验。开发中遇到的主

要难点包括：

- 大数据量波形的高效渲染：音频文件通常包含大量采样点（如44.1kHz采样率下1分钟的音频

有2646000个采样点），直接渲染所有采样点会导致性能问题 - 滚轮缩放的精确控制：需要实现以鼠

标位置为中心的缩放，同时保持波形的相对位置不变 - 平滑的平移效果：在拖动波形时需要保持流

畅的视觉效果

解决方案：

- 采用多分辨率波形数据：预先计算不同缩放级别的波形数据，根据当前缩放级别选择合适分

辨率的数据进行渲染 - 实现以鼠标位置为中心的缩放算法：

# 计算缩放前后的时间范围

mouse_time = self.pixel_to_time(event.pos().x())

new_scale = self.scale * (1 - delta * 0.1)

new_scale = max(0.01, min(new_scale, 10.0))

# 计算新的偏移量，使鼠标位置对应的时间保持不变

self.offset += (mouse_time - self.offset) * (1 - new_scale / self.scale)

self.scale = new_scale
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- 使用Qt的双缓冲机制：在离屏缓冲区中绘制波形，然后将绘制结果复制到屏幕上，避免闪烁

A.3.2 2. 音频对齐与光标同步

在音频编辑和分析中，需要精确的对齐功能和光标同步，主要难点包括：

- 不同采样率音频的对齐：系统需要处理不同采样率的音频文件，确保它们在时间轴上正确对

齐 - 多轨道音频的光标同步：在多轨道场景下，需要确保所有轨道的光标位置保持同步 - 高精度的

时间定位：需要支持毫秒级的精确时间定位

解决方案：

- 统一使用内部采样率：将所有输入音频转换为内部统一的采样率（44.1kHz），简化时间计算

- 实现中央光标管理机制：使用全局光标管理器，所有轨道监听光标的位置变化并同步更新 - 采用

双精度浮点数存储时间值：使用double类型存储时间值，确保高精度的时间计算 - 实现像素到时间

的精确转换：

def pixel_to_time(self, pixel_x):

return (pixel_x - self.margin_left) / self.scale + self.offset

def time_to_pixel(self, time):

return (time - self.offset) * self.scale + self.margin_left

A.3.3 3. 实时音频处理与低延迟

实时录音和分析功能需要低延迟的音频处理，主要难点包括：

- 音频输入输出的低延迟配置：需要优化音频设备的缓冲区大小，平衡延迟和稳定性 - 实时特

征提取的性能优化：需要在实时环境下高效计算梅尔频谱等特征 - 模型推理的实时性：需要确保声

枢模型的推理速度满足实时需求

解决方案：

- 动态调整音频缓冲区大小：根据设备性能自动调整缓冲区大小，在不同设备上都能获得较好

的延迟性能 - 采用增量式特征计算：每次只计算新增音频帧的特征，避免重复计算 - 模型轻量化优

化：使用声枢（VocalPivot v3）轻量化模型，参数量仅0.13M，确保实时推理性能

A.3.4 4. 跨平台兼容性

作为桌面端应用，需要确保在不同操作系统上都能正常运行，主要难点包括：

- 音频设备API的差异：不同操作系统的音频设备API存在差异，需要统一抽象 - 字体和UI渲

染的一致性：需要确保UI在不同平台上看起来一致 -文件路径处理的差异：不同操作系统的文件路

径分隔符不同

解决方案：

- 使用PySide6的QAudio API：统一封装音频设备操作，屏蔽平台差异 - 使用Qt的字体和样式

系统：使用Qt提供的字体和样式，确保跨平台一致性 - 使用os.path模块处理路径：使用Python标

准库的os.path模块，自动处理不同平台的路径分隔符
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A.4 技术特点

1. 桌面端应用：基于PySide6开发，无需浏览器，支持Windows、macOS、Linux跨平台运行

2. 模块化设计：功能模块独立封装，便于扩展和维护 3. 轻量化模型：基于声枢（VocalPivot v3）

模型，参数量仅0.13M，支持本地端高效推理 4. 实时处理：采用高效的音频处理算法，实现低延

迟的实时录音和分析 5. 多标签分类：支持8类声乐技术的同步识别，满足复杂演唱场景需求 6. 直

观可视化：将分类结果以图表形式直观展示，便于用户理解 7. 用户友好：提供简洁易用的桌面界

面，无需专业技术知识即可操作

知音系统的开发，将声枢（VocalPivot v3）模型的技术优势转化为实际应用，为声乐学习者提

供了便捷的AI辅助工具，同时也为音频标注等专业场景提供了高效解决方案。
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B VocalPivot v4 参数

Raw Input(mel features, labels)

Spectral Augmentation(frequency mask/amplitude perturbation)

Temporal Augmentation(time stretch/cropping)

Preprocessing(frequency slicing + sequence padding)

Model Input(batch, seq len, input dim)

Transpose(batch, input dim, seq len)

Conv1D32 filters, 5 kernel, padding=2

BatchNorm1d(32 channels)

ReLU Activation

Depthwise Conv1D32 filters, 3 kernel, groups=32

Pointwise Conv1D64 filters, 1 kernel

BatchNorm1d(64 channels)

ReLU Activation

Transpose(batch, seq len, 64)

LSTMhidden size=128, batch first=True

Dropoutrate=0.3

Shared DenseLinear(128→64) + ReLU

Dropoutrate=0.4

Multi-Label Classifiernum labels × Linear(64→1)

Output(batch, seq len, num labels)
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C 其他实验数据

表 9: VocalPivot v3模型不同语言数据的整体评估结果

测试数据 准确率 损失值 样本数量

中文 0.9589 0.7895 18,542

英文 0.9014 2.4505 12,139

混合 0.9361 1.4472 30,681

表 10: VocalPivot v3模型中文数据各标签评估指标

标签 准确率 精确率 召回率 F1分数 支持样本数

0 0.9023 0.8326 0.8463 0.8394 2,860,295

1 0.9577 0.8331 0.7064 0.7646 921,916

2 0.9798 0.9083 0.8196 0.8617 727,623

3 0.9860 0.8929 0.7120 0.7923 355,165

4 0.9885 0.9093 0.7341 0.8124 322,495

5 0.9819 0.6751 0.0974 0.1703 181,142

6 0.8750 0.7344 0.3701 0.4921 1,551,366

表 11: VocalPivot v3模型英文数据各标签评估指标

标签 准确率 精确率 召回率 F1分数 支持样本数

0 0.8356 0.6072 0.7988 0.6899 1,421,501

1 0.7505 0.7804 0.1889 0.3042 1,792,276

2 0.9350 0.6622 0.5991 0.6291 571,563

3 0.9650 0.4334 0.1781 0.2525 206,130

4 0.9217 0.1975 0.4005 0.2646 218,365

5 0.9765 0.2270 0.0023 0.0046 145,338

6 0.8268 0.5038 0.2860 0.3649 1,080,165
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表 12: VocalPivot v3模型混合数据各标签评估指标

标签 准确率 精确率 召回率 F1分数 支持样本数

0 0.8759 0.7444 0.8305 0.7851 4,281,796

1 0.8757 0.8143 0.3647 0.5038 2,714,192

2 0.9621 0.7998 0.7226 0.7593 1,299,186

3 0.9777 0.7871 0.5160 0.6233 561,295

4 0.9620 0.4611 0.5994 0.5213 540,860

5 0.9797 0.6508 0.0551 0.1016 326,480

6 0.8559 0.6330 0.3356 0.4386 2,631,531

表 13: VocalPivot v4模型模型整体性能指标

平均损失 宏平均精确率 宏平均召回率 宏平均F1 加权平均精确率 加权平均F1

0.8335 0.8486 0.6444 0.7102 0.8367 0.7414

表 14: VocalPivot v4模型各标签详细评估指标

标签 准确率 精确率 召回率 F1分数 TP FP FN TN 支持数

0 0.9182 0.8045 0.8549 0.8290 563,143 136,831 95,550 2,047,035 658,693

1 0.9398 0.8986 0.7728 0.8310 420,606 47,446 123,657 2,250,850 544,263

2 0.9783 0.9171 0.8388 0.8762 218,669 19,779 42,034 2,562,077 260,703

3 0.9838 0.8646 0.6776 0.7598 72,740 11,391 34,608 2,723,820 107,348

4 0.9854 0.8606 0.7564 0.8051 85,778 13,892 27,626 2,715,263 113,404

5 0.9825 0.8312 0.2384 0.3706 14,612 2,968 46,668 2,778,311 61,280

6 0.8612 0.7635 0.3715 0.4998 197,118 61,058 333,420 2,250,963 530,538

以下为VocalPivot v4模型双语测试的混淆矩阵。
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(a) 标签0 (b) 标签1

(c) 标签2 (d) 标签3

图 12: 标签0-3的混淆矩阵
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(a) 标签4 (b) 标签5

(c) 标签6

图 13: 标签4-6的混淆矩阵
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